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3 markov chains

We assume working knowledge of probability and no knowledge of measure theory
(though a grasp of analysis is essential). See these MATH 356 notes, also taught by Louigi!

I Markov Chains
Conditional expectations will be important in this course. Recall E[X |Y = y0], where X, Y

are random variables. If Y is continuous, writing E[X |Y = y0] = P(X,Y=y0)
P(Y=y0) , will not work.

Instead, we consider the slice of the joint density function f (x, y) at y = y0. The result is a
one dimensional function g(x) which may not have probability 1. Hence, we divide by∫
g(x) to make it into a density function:

E[X |Y = y0] =
∫
R

f (x, y0)∫
R f (x, y0)dx

xdx

We frequently write fX |Y (x) = f (x, y)/
∫
R f (x, y)dx, and call this the conditional densitydef 1.1 of X given

Y . For fixed y, then, E[X |Y = y] = E[Z], where Z ∼ fX |Y .

introduction

Before providing definitions, we give some examples of stochastic processes:

Eg. 1.1 A simple random walk: Si+1 = Si + Xi , where Xi ∼ Ber(p) and S0 = 0. We
might ask: does Si ever return to 0, i.e.

P(∃i > 0 : Si = 0)

Eg. 1.2 A branching process: as in asexual reproduction, we have an initial node.
Each node n has a number of children Xn, where Xn

2 ∼ Ber(p). We denote Zi

to be the number of inididuals in the i-th generation. We might ask: does Zi

ever have no children, i.e.

P(∃i > 0 : Zi = 0)

Eg. 1.3 Choose k independent random points in the square [0,
√
k]2. On average, then,

there is 1 point within any unit square U ⊆ [0,
√
k]2.

Given a finite or countable set V , a Markov chaindef 1.2 with state space
def 1.3

V is a sequence Xn : n ≥ 0
of random variables, with Xn ∈ V , such that:

P(Xn+1 = vn+1

future

|X0 = v0, ..., Xn−1 = vn−1

past

, Xn = vn
present

) = P(Xn+1 = vn+1|Xn = vn)

In other words, the future only depends on the past via the present. This is called the
Markov propertydef 1.4 .

https://nicholashayek.com/tex/MATH/356/Probability%20Notes.pdf
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Sometimes we allow Markov chains to be only finitely large (i.e. 0 ≤ n ≤ m). For instance,
we limit ourselves to one weekend of gambling in Las Vegas. A graphical example would
look something like:

1 1 1 1

2 2 2 2

3 3 3 3

n = 0 n = 1 n = 2 n = 3

3/8

1/8

1/2

P(X3=2|X2=1)

prop 1.1By repeated Bayes’ Law, we observe

P(X1 = v1, ..., Xn = vn|X0 = v0)

=P(X1 = v1|X0 = v0) · P(X2 = v2|X0 = v0, X1 = v1) · · ·P(Xn = vn|X0 = v0, ..., Xn−1 = vn−1)

=P(X1 = v1|X0 = v0) · P(X2 = v2|X1 = v1) · · ·P(Xn = vn|Xn−1 = vn−1) by Markov property

time-homogeneous markov chains

We say that a Markov chain is time-homogeneous def 1.5ifWe often write
THMC

, for all u, v ∈ V and n ≥ 0

P(Xn+1 = v|Xn = u) = P(X1 = v|X0 = u)

In other words, the chain’s behavior is described entirely by P(X1 = v|X0 = u) for each
(v, u) ∈ V × V . In this case, we can describe such probabilities in a transition matrix def 1.6P :

P =
(
pu,v

)
(u,v)∈V 2

=
(
P(X1 = v|X0 = u)

)
(u,v)∈V 2

Eg. 1.4 Recall the game Snakes and Ladders. A 6 × 6 grid is indexed 1, ..., 36. Players
start at the 1 cell. The game ends when a player reaches the 36 cell. A die roll
dictates how many spots one advances. The are some directed edges between
cells (increasing: "ladders", decreasing: "snakes"). One must follow these
edges when one lands at its tail. Suppose a ladder exists from 11 to 27. Then

P(X11 = 27|X10 = 6, X9 = 3) =
1
6

= P(X11 = 27|X10 = 6) = P(X2 = 27|X1 = 6)

We see that Snakes and Ladders is naturally modeled as a time-homogeneous
Markov chain.

Eg. 1.5 Sampling without replacement is not a Markov chain. If we sample from
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|X | = 10, we have

P(X3 = a |X2 = b) = 1/9

P(X3 = a |X2 = b, X1 = c) = 1/8

P(X3 = a |X2 = b, X1 = a) = 0

so we do not satisfy the Markov property.

Eg. 1.6 Returning to the Snakes and Ladders example, consider S ⊆ V . Let TS =
inf{n ≥ 0 : Xn ∈ S}, which we call the "hitting timedef 1.7 " of S. We may ask...

• What is the average number of rounds to finite? We can write this as
E[T{36}|X0 = 1].

• What is the probability of landing on 18 or 19 before the game ends? We
can write this as P(T{18,19} < T{36}|X0 = 1).

• What is the average number of visits to 6 before the game ends? We can
write this as

E[#{n ∈ [T{36}] : Xn = 6}|X0 = 1]

• What is the expected proportion of time spent on state 5 before the game
ends?

• If we allow two players, what is the probability that player 1 wins? Is
this still a Markov chain?

A matrix P =
(
pu,v

)
(u,v)∈V 2

is called a stochastic matrixdef 1.8 if every row sums to 1, i.e.

∀ u ∈ V ,
∑
v∈V

pu,v = 1

Note that any stochastic matrix is the transition matrix of some time-homogeneous Markov
chain with state space V and transition probabilities

P(Xn+1 = v|Xn = u) = P(X1 = v|X0 = u) = pu,v

A directed graph, together with its stochastic matrix, can visualize any THMC:

a⃝ c⃝

b⃝

d⃝

.25

.5
.25

.25

.75

.5

.5
1

←→


0 .5 .25 .25
.5 0 0 .5
0 0 .25 .75
1 0 0 0


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Eg. 1.7 Random walks on an undirected weighted graph, where edge weights dictate
the proportional probability of transitioning between two states, are a special
class of THMCs. In particular, given a graph G = (V , E) with weights w(e) >
0 : e ∈ E, we set

pu,v =
w({u, v})∑

z∈N (u) w({u, z})

If there are no edges u ↔ v, we write pu,v = 0.

Not every THMC can be represented by a random walk on an undirected
weighted graph. In particular, see the directed graph listed above, or any
transition matrix which is not symmetric.

As a concrete example, we can consider a random walk on the number line Z,
where, if w(k, k + 1) = α, w(k − 1, k) = α

2 .

· · · −3 −2 −1 0 1 2 3 · · ·
1

16
1
8

1
4

1
2 1 2 4 8

Multi-Step Transition Probabilities

Given a THMC X = Xn : n ≥ 0 with a transition matrix P , we write

P(X2 = v|X0 = u) =
∑
w∈V

P(X2 = v, X1 = w|X0 = u)

=
∑
w∈V

P(X1 = w|X0 = u)P(X2 = v|X1 = w,����X0 = u) by Markov property

=
∑
w∈V

pu,wpw,v = (P 2)u,v or write P 2
u,v

prop 1.2Hence, to determine a two-step transition probability, and by extension an n-step transi-
tion probability from u to w, we consider P n

u,v .

proof.See Prop 1.1 to expand probabilities, using Bayes’, as needed. We get that

P(Xn = v|X0 = u) =
∑

v1,...,vn−1∈V
P(X1 = v1, ..., Xn−1 = vn−1, Xn = v|X0 = u)

=
∑

v1,...,vn−1∈V
pu,v1

p(v1, v2) · · · p(vn−1, v) = (P n)u,v

prop 1.3Thus, if P is a stochastic matrix, then so is P n.

proof.∑
v∈V P n

u,v =
∑

v∈V P(Xn = v|X0 = u) = 1.



7 markov chains

Theorem 1.1 Markov Property

If Xn : n ≥ 0 is a THMC with state space V , then for all u0, ..., un−1, u, v ∈ V ,

P(Xn+m = v|X0 = u0, ..., Xn−1 = un−1, Xn = u) = P(Xn+m = v|Xn = u) = P m
u,v

proof. One shows this by combining the Markov property with Prop 1.2 via induction.

Somewhat nonsensically, we also call this the Markov property. When talking about
THMCs, this will be the default notion.

We say that a Markov chain has an initial distributiondef 1.9 α = (αv : v ∈ V ) if P(X0 = v) = αv

for each v ∈ V . If this is the case, we often write α as a subscript of our state probabilities.
For instance,

Pα(Xn = v) =
∑
u∈V

Pα(X0 = u, Xn = v) =
∑
u∈V

Pα(X0 = u)Pα(Xn = v|X0 = u) =
∑
u∈V

αuP
n
u,v

prop 1.4 For any event E depending only on X0, ..., Xn, with P(Xn = u, E) > 0, we have

P(Xn+m = v|Xn = u, E) = P m
u,v

proof. For any such event E, we can determine whether E occurs exactly when we know the
realized values ui of Xi for i = 1, ...n− 1. Hence, we may write S to be the set of tuples
(u0, ..., un−1) that guarantee E. It follows that

P(Xn = u, E) =
∑
s∈S

P(x = s, Xn = u)

Similarly, we have

P(Xn+m = v, Xn = u, E) =
∑
s∈S

P(Xn+m = v, Xn = u, x = s)

=
∑
s∈S

P(Xn+m = v|Xn = u, x = s)P(Xn = u, x = s)

= P m
u,v

∑
s∈S

P(Xn = u, x = s) = P m
u,vP(Xn = u, E)

Divide and use Bayes, and the result follows.

prop 1.5 If X is a THMC with transition matrix P , then, for all k ≥ 1, Xkn : n ≥ 0 is a THMC with
transition matrix P k .
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proof.For any n , 0, any sequence u0, ..., un+1 ∈ V satisfies

P(X(n+1)k = un+1|X0 = u0, Xk = u1, ..., Xnk = un) = P k
un,un+1

Theorem 1.2 Chapman-Kolmogorov

For any Markov chain X with state space V , any m, n ≥ 0, and u, v ∈ V ,

P(Xm+n = v|X0 = u) =
∑
w∈V

P(Xn = w|X0 = u)P(Xm+n = v|Xn = w)

If the X is time homogeneous, then this is P n+m
u,v , which agrees with Prop 1.2.

Long Term Behavior

Recall from probability the law of large numbers def 1.10: if Yn : n ≥ 1 are IID with common mean
µ, then Sn

n → µ in probability, where Sn =
∑n

i=1 Yi , i.e. ∀ε > 0,

lim sup
n→∞

P
(∣∣∣∣∣Snn − µ

∣∣∣∣∣ > ε
)

= 0

If Yi ∈ Z then, for k, ℓ, ui ∈ Z and i = 1, ..., n − 1,

P(Sn+1 = ℓ|Sn = k, Si = ui ∀i) = P(Yn+1 = ℓ − k|Sn = k, Si = ui ∀i)
= P(Yn+1 = ℓ − k|Y1 = u1 − u0, Y2 = u2 − u1, ..., Yn = k − un−1)

= P(Yn+1|ℓ − k) = P(Y1 = ℓ − k) = Pk,ℓ

where Sn : n ≥ 0 has transition matrix P , noting that it may be viewed as a THMC.

From now on, we denote by Pv(E) the probability P(E|v).

Eg. 1.8 A general two-state chain, with states A and B, can be described by

P =
(
1 − α α
β 1 − β

)
Let qn = PA(Xn = A) = P(Xn = A|X0 = A). Then

qn+1 = PA(Xn+1 = A, Xn = A) + PA(Xn+1 = A, Xn = B)

= PA(Xn+1 = A|Xn = A)PA(Xn = A) + PA(Xn+1 = A|Xn = B)PA(Xn = B)

= (1 − α)qn + β(1 − qn) = β + (1 − α − β)qn

This recurrence has a unique solution. In particular, one can find

qn =
β

α + β
+ (1 − α − β)n

α
α + β
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It follows that qn →
β

α+β , and hence PA(Xn = B) = 1 − qn → α
α+β . Likewise:

PB(Xn = B) =
α

α + β
+ (1α − β)n

β

α + β

So PB(Xn = B)→ α
α+β .

Let π := (πA, πB) :=
(

β
α+β ,

α
α+β

)
be the distribution of our initial state X0, Then

Pπ(X1 = A) = πAPA(X1 = A) + πBPB(X1 = A) = πA

and, similarly, Pπ(X1 = B) = πB. Hence, if X0 has initial distribution π, then
X1 also has distribution π. By induction, Xn has distribution π ∀n ≥ 0.

When we say X = Markov(P ), we mean that X is a THMC with transition matrix P .

A probability distribution π is called stationarydef 1.11 if πP = π. Similarly, a probability
distribution λ is called a limiting distributiondef 1.12 if, for each u, v ∈ V

(P n)u,v → λv as n→∞

In other words, Pu(Xn = v) → λv . Note that, for any initial distribution α, we have
αP n → λ, i.e. (αP n)v → λv , where λ is limiting.

prop 1.6 If λ is a limiting distribution for P , then λ is stationary for P .

proof. Fix any initial distribution α, we have

λ = lim
n→∞

(αP n) = lim
n→∞

(αP n−1P ) = ( lim
n→∞

αP n−1)P = λP

Stationary distributions need not be unique, but limiting distributions are (as the limit
limn→∞ αP n is well-defined). In general, then, stationary distributions need not be
limiting distributions. When n = 0, P n = I ,

which encapsulates
the idea that, at
timestep 0, we will
be at our initial
positions.

A stochastic matrix P is called regulardef 1.13 if ∃n ≥ 1 such that P n > 0 on all entries.

Theorem 1.3 Fundamental Theorem of Markov Chains

Every finite, regular stochastic matrix P has a limiting distribution π.

Incorporating some of the formulations above, this is equivalent to saying: For a regular
stochastic matrix, there exists a unique distribution π = (πv : v ∈ V ) such that πP = π and
Pu(Xn = v)→ πv ∀u, v ∈ V . In this case, there is

a unique stationary
distribution, and it is
the unique limiting
distribution.

A stationary distribution always exists!

Let ρ = ⟨1, ..., 1⟩. Then note that P ρ = ρ, since the sum of any row in P must be 1. Hence,
P has eigenvalue 1. It follows that it has a left eigenvector, i.e. π : πP = π. This is exactly
a stationary distribution, as long as we scale suitably such that π is a distribution.
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However, then process of scaling into a distribution is non-trivial. Since π may have
negative coordinates, and hence

∑
πi = 0, we must consider instead |π|, i.e. prove it is

also an eigenvalue.This is true, but
requires the fact that

P is stochastic
Periodicity of States

For u, v ∈ V , we say that v is accessible def 1.14from u if ∃n ≥ 0 such that (P n)u,v > 0. Equivalently,
in the directed graph generated by P , there is a directed path from u to v. When v is
accessible from u, we write u → v.

States u and v communicate def 1.15if u → v and v → u. When u and v communicate, we
write u ↔ v. Observe that communication is a equivalence relation. Hence, the state
space V can be written as a disjoint union of mutually-communicating states, called a
communication class def 1.16. Note that, in the directed graph generated by P , these correspond to
the strongly connected components.

We say that P is irreducible def 1.17if there is only one communication class.Clearly, if P is
regular, then it is

irreducible prop 1.7u → v ⇐⇒ Pu(T{v} < ∞) > 0.

The period def 1.18of a state u ∈ V is

d(u) := gcd(n > 0 : P n
u,u > 0)

If d(u) = 1, we call u aperiodic def 1.19. By extension, P is aperiodic if d(u) = 1 ∀u ∈ V , and X is
aperiodic if X = Markov(P ) for P aperiodic.

prop 1.8If u ↔ v, then d(u) = d(v).

proof.Let I = {n > 0 : P n
u,u > 0}, and similarly J for v. Hence, d(u) = gcd(I) and d(v) = gcd(J).

Let a, b > 0 such that P a
u,v > 0 and P b

v,u > 0. Then

P a+b
u,u ≥ P a

u,vP
b
v,u > 0

=⇒ a + b ∈ I , so d(u)|a + b. Now, if n ∈ J , then

P a+b+n
u,u ≥ P a

u,vP
n
v,vP

b
v,u > 0

=⇒ a + b + n ∈ I , so d(u)|n + a + b. But, by the previous line, d(u)|n. Since n ∈ J is
arbitrary, we can write d(u)| gcd(J) = d(v).

Symmetrically, we could conclude that d(v)|d(u), so indeed d(v) = d(u).

prop 1.9Let I = {n > 0 : P n
u,u > 0}. If gcd(I) = 1, then ∃a, b ∈ I such that gcd(a, b) = 1.

proof.This is not true for any I (and thus relies not only on number theory). Let ℓ, m ∈ I , with
ℓ < m. Let k = m − ℓ. If k = 1, then gcd(ℓ, m) = 1. Otherwise, since gcd(I) = 1, there is
an n ∈ I with k ∤ n. We then write n = qk + r, with r ∈ [k − 1]. Then m′ ∈ (q + 1)m ∈ I ,

since P
(q+1)m
u,u ≥ (P m

u,u)q+1. Symmetrically, we can argue ℓ′ = (q + 1)ℓ ∈ I .
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Similarly, ℓ∗ := ℓ′ + n ∈ I , since P ℓ′+n
u,u ≥ P ℓ′

u,uP
n
u,u . We have

m′ − ℓ∗ = (q + 1)m − (q + 1)ℓ − n = (q + 1)(m − ℓ) − n
= (q + 1)k − n = k − r ∈ [k − 1]

TODO...

Theorem 1.4 Postage Stamp Lemma

If P is irreducible and aperiodic, then ∀u, v ∈ V ,∃N such that P n
u,v > 0 ∀n ≥ N .

Before proving this, we note that, for a, b ≥ 1 with gcd(a, b) = 1, then for any q ≥ ab, we
can write q = ja + kb for integers j, k ≥ 0.

proof. Fix u, v ∈ V . Since P is aperiodic, there are a, b ≥ 1 with P a
u,u , P

b
u,u > 0 and gcd(a, b) = 1,

by Prop 1.9. Since P is irreducible, there is some m > 0 with P m
u,v > 0. Thus, let

N = m + ab. For any n ≥ N , let q = n −m. We have that q ≥ ab, so we can find j, k ≥ 0
with q = ja + kb. Then

P n
u,v = P

q+m
u,v = P

ja+kb+m
u,v ≥ P

ja
u,uP

kb
u,uP

m
u,v ≥ (P a

u,u)j(P b
u,u)kP m

u,v

All are positive, so P n
u,v > 0, as desired.

Theorem 1.5 Characterization of Regular Markov Chain

Let P = (pu,v)u,v∈V be a stochastic matrix, where |V | < ∞. Then

P is regular ⇐⇒ P is irreducible and aperiodic

proof. We first note why finiteness is necessary. Consider:

k − 2 k − 1 k k + 1 k + 2

with all edges having weight 1. This graph is clearly aperiodic and irreducible, but
not regular.

( =⇒ ) We start with the "easy" direction. If P is regular, then ∃n > 0 s.t. P n
u,v > 0 for

all u, v ∈ V . Then, for all u, v ∈ V , we have u → v and v → u. Hence, P is irreducible.
Now, if P is irreducible, then for all u ∈ V , there is some v ∈ V such that Pv,u > 0
(think about this in graph theoretic terms). Then, let n > 0 be such that P n

u,u is positive.
We have

P n+1
u,u ≥ P n

u,vPu,v > 0

So, with I = {m > 0 : P m
u,u > 0}, d(u) = gcd(I) ≤ gcd(n, n + 1) = 1. It follows that
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d(u) = 1, so u is aperiodic (and hence P is aperiodic).

(⇐= ) By Thm 1.4, for each u, v ∈ V , there exists N : P n
u,v > 0 ∀n ≥ N . Let N ∗ be the

maximum value of N determined over all pairs (u, v) ∈ V 2. Then, for n ≥ N ∗ and all
u, v ∈ V , P n

u,v > 0. It follows that all entries of P n are positive, and we are done.

Finding Stationary Distributions

Recall that x = (xv : v ∈ V ) is a stationary distribution if xP = x. Let V be finite. Then, for
a stationary distribution x, we have

x1p1,1 + · · · + xnpn,1 = x1

x1p1,2 + · · · + xnpn,2 = x2

...

x1p1,n + · · · + xnpn,n = xn

We have n equations, n unknowns, and a homogeneous system, so there is not a unique
solution. If

P =


0 1 0
0 0.5 0.5

0.5 0 0.5


We can compute x = ⟨t, 2t, 2t⟩. But, noting that x is a probability distribution, and hence
5t = 1, this yields x = ⟨1/5, 2/5, 2/5⟩. We’ll consider some special cases.

undirected graphs

Let G = (V , E) be undirected. Then we define a THMC byThis is distinct from
Example 1.7

Pu,v =

 1
deg(u) {u, v} ∈ E
0 o.w.

Let x = (deg(v) : v ∈ V ). We have

(xP )v =
∑
u∈V

deg(u)Pu,v =
∑

u∈N (v)

deg(u) · 1
deg(u)

= deg(v)

Hence, xP = x. Recalling that
∑

v∈V deg(v) = 2|E|, we conclude that(
deg(v)

2|E|
: v ∈ V

)
is a stationary distribution.
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undirected weighted graphs

Let G = (V , E) be undirected. Then, we define a THMC by This is not distinct
from Example 1.7

Pu,v =


w({u,v})∑

z∈N (u) w({u,z}) v ∈ N (u)

0 o.w.

Let x = (
∑

e:e∋v w(e) : v ∈ V ). Then we can compute xP = x, and similar to above,

x =
( ∑

e:e∋v w(e)
2
∑

e∈E w(e)
: v ∈ V

)
is a stationary distribution.

Transience and Recurrence

Recall TS = inf{n ≥ 0 : Xn ∈ S}, the "hitting time" of S. We let RS = inf{n > 0 : Xn ∈ S}.
Note that if TS > 0, TS = RS . Otherwise, RS gives the first "return timedef 1.20 " to the set S.

A state v ∈ V is called recurrentdef 1.21 if Pv(R{v} < ∞) = 1. If all states of v are recurrent, we may
P and X = Markov(P ) recurrent. Otherwise, we call v transientdef 1.22 , and similarly extend the
notion to the transition matrix and chain when all state are transient.

For a given state v ∈ V , we call Lv = |{n ≥ 0 : Xn = v}| the local timedef 1.23 of v. This notion is
not probabilistic: we simply consider a realized walk on the chain (or a part of the chain).
Note that, if v = Xj and v is recurrent, then Lv = ∞.

prop 1.10 Let X = Markov(P ). For any state v ∈ V and k > 1, Intuitively, if Lv > k
when X0 = v, then
Lv > k − 1 when
Xi1 = v, where i1 is
the first time we
return to v.

Pv(Lv > k) = Pv(Lv > 1)k

proof. Using the law of total probability:

Pv(Lv > k) = E [Pv(Lv > k|Rv)] =
∞∑
t=1

Pv(Rv = t)Pv(Lv > k|Rv = t)

=
∞∑
t=1

Pv(Rv = t)Pv(Lv > k|Rv = t, Xt = v) As Rv = t ⇐⇒
Rv = t ∧ Xt = v

=
∞∑
t=1

Pv(Rv = t)Pv(Lv > k − 1)

= Pv(Lv > k − 1)
∞∑
t=1

Pv(Rv = t)

= Pv(Lv > k − 1)Pv(Rv < ∞) = Pv(Lv > k − 1)Pv(Lv > 1)

The result follows by induction.
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prop 1.11

Pv(Lv = ∞) =

1 v recurrent

0 v transient

proof.This follows directly from Prop 1.10 + monotonicity of probability.

prop 1.12

∞∑
n=0

P n
v,v =

∞ v recurrent
1

1−Pv(R{v}<∞) v transient

proof.This follows from linearity of expectation, and the fact that, for a non-negative integer
variable Z,

E[Z] =
∞∑
k=0

P(Z > k)

In particular... [TODO]

prop 1.13If u ↔ v, then u is transient ⇐⇒ v is transient.

proof.Fix a, b ≥ 0 with P a
u,v , P

b
v,u > 0. Then

∞∑
n=0

P n
v,v ≥

∞∑
n=0

P a+b+n
v,v =

∞∑
n=0

P b
v,uP

n
u,uP

a
u,v

= P b
v,uP

a
u,v

∞∑
n=0

P n
u,u

Thus, if v is transient, then
∑∞

n=0 P
n
v,v < ∞, so it must be that

∑∞
n=0 P

n
u,u < ∞, i.e. u is

transient. The argument is identical in reverse.

Eg. 1.9 If u ↔ v and u is recurrent, then Pu(T{v} < ∞) = 1.

Eg. 1.10 The following chain is completely transient:

· · · −2 −1 0 1 2 · · ·
2/3

1/3

2/3

1/3

2/3

1/3

2/3

1/3

In fact, we could replace 2/3 by p, and 1/3 by 1 − p. In this case, the chain is
irreducible. To see that it is transient, we have

P 2n
0,0 =

(
2n
n

)
pn(1 − p)n
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Then

∞∑
n=0

P 2n
0,0 <

∞∑
n=0

22npn(1 − p)n =
∞∑
n=0

(4p(1 − p))n < ∞ if p ,
1
2

By Prop 1.12. Notice that
∑∞

n=0 P
n
0,0 =

∑∞
n=0 P

2n
0,0, since it is only possible to

return on even-length cycles.

We conclude that the chain is transient when p , 1
2 .

fact Stirling’s Formula provides

m! ∼
(m
e

)m√
2πm

in that
lim
m→∞

m!(
m
e

)m√
2πm

= 1

This fact implies These facts, though
out of the scope of
this course, can be
derived from a
careful treatment of
Reimann sums

e
(n
e

)n
≤ n! ≤ e(n + 1)

4

(n + 1
e

)n
Eg. 1.11 We return to the previous example, letting p = 1

2 . Then

∞∑
n=0

P 2n
0,0 =

∞∑
n=0

(2n)!
(n!)2 [p(1 − p)]n ∼

∞∑
n=0

(
2n
e

)2n √
2π(2n)[(

n
e

)n√
2πn

]2 [p(1 − p)]n

=
∞∑
n=0

[4p(1 − p)]n
√
πn

=
∞∑
n=0

1
√
πn

= ∞

We conclude that the chain is recurrent when p = 1
2 .

prop 1.14 If V is finite, then there is at least one recurrent state.

proof. Fix an initial distribution α = (αv : v ∈ V ). Then Pα (
∑

v∈V Lv = ∞) = 1. We conclude
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that there is at least one state v ∈ V with Pα(Lv = ∞) > 0. But also:

Pα(Lv = ∞) =
∞∑
n=0

Pα(Lv = ∞, Tv = n) =
∞∑
n=0

Pα(Lv = ∞|Tv = n)Pα(Tv = n)

=
∞∑
n=0

Pα(Lv = ∞|Tv = n, Xn = v)Pα(Tv = n)

=
∞∑
n=0

Pα(Lv = ∞|Xn = v)Pα(Tv = n)

=
∞∑
n=0

Pv(Lv = ∞)Pα(Tv = n)

So Pv(Lv = ∞) > 0 =⇒ Pv(Lv = ∞) = 1, by Prop 1.11.

prop 1.15Finite, irreducible chains are recurrent.

proof.Since the chain is finite it has at least one recurrent state, by Prop 1.14. Then all states
must be recurrent, since the chain is irreducible, by Prop 1.13.

Canonical Decompositions

Fix a transition matrix P and list the communication classes of V as

D1, D2, ... (transient) C1, C2, ... (recurrent)

Note that we can split the chain up in this way by Prop 1.13. Set D = ∪i≥0Di . Then the
canonical decomposition def 1.24of the chain is defined to be

D ⊔ C1 ⊔ C2 ⊔ · · ·

We say that a communication class C is closed def 1.25if, for any u ∈ C, v < C, pu,v = 0. Intuitively,
if X0 ∈ C, or we enter C at some later time, we will never leave C.

prop 1.16If C is a recurrent communication class, then C is closed.

proof.Fix u ∈ C, v < C. Suppose v 7→ u. If pu,v > 0, then v 7→ v, so v ∈ C  . Suppose v ̸7→ u.
Then Pu(Ru = ∞) ≥ Pu(X1 = v) = pu,v . But Pu(Ru = ∞) = 0, since u is recurrent. It
follows that pu,v = 0.

The converse of P rop1.16 is not true in generality, but it is in the finite case:

prop 1.17Finite, closed communication classes are recurrent.

proof.From any starting state in C, we must visit some state u ∈ C infinitely often, as
|C| < ∞ and Xt ∈ C ∀t. But recurrence is a class property by Prop 1.13. Hence, all of
C is recurrent.
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When our communication classes are closed, we have

D

C1 C2 C3 · · ·

Proof of Fundamental Theorem of Markov Chains

Recall Thm 1.3:

Every finite, regular stochastic matrix P has a limiting distribution π.

We will prove this in two steps. First, we will find some stationary distribution. Then, we
will prove that this is a limiting distribution.

Theorem 1.6 Existence Theorem

Let P be irreducible and recurrent. Let (Xn : n ≥ 0) = Markov(P ). Fix u ∈ V , which
we call a reference vertex, and, for any v ∈ V , define

γv = Eu[|{0 ≤ n < Ru : Xn = v}|]

Let γ = (γv : v ∈ V ). Then γP = γ , and 0 < γv < ∞ ∀v ∈ V . By Eu , we mean the
expectation, under
the assumption that
X0 = u

proof. Observe that γu = 1. Write

γv = Eu

Ru−1∑
n=0

1Xn=v

 = Eu

 Ru∑
n=1

1Xn=v

 = Eu

 ∞∑
n=1

1Xn=v1n≤Ru


We utilize a second indicator variable in order to use linearity of expectation (other-
wise, our sum would index over a random variable, which is not valid). Then

γv =
∞∑
n=1

Eu[1Xn=v1n≤Ru
] =

∞∑
n=1

Pu(Xn = v, n ≤ Ru)

Now, using the law of total probability,

Pu(Xn = v, n ≤ Ru) =
∑
w∈V

Pu(Xn−1 = w, Xn = v, n ≤ Ru)

=
∑
w∈W

Pu(Xn = v|Xn−1 = w, n ≤ Ru)Pu(Xn−1 = w, n ≤ Ru)

=
∑
w∈V

Pu(Xn−1 = w, n ≤ Ru)Pw,v
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So

γv =
∞∑
n=1

∑
w∈W

Pw,vPu(Xn−1 = w, n ≤ Ru) =
∑
w∈V

Pw,v

 ∞∑
n=1

Pu(Xn−1 = w, n − 1 < Ru)


=

∑
w∈V

Pw,v

∞∑
n=0

Pu(Xn = w, n < Ru) =
∑
w∈V

Pw,v

∞∑
n=0

Eu[1Xn=w1n<Ru
]

=
∑
w∈V

Pw,vEu

Ru−1∑
n=0

1Xn=w

 =
∑
w∈V

Pw,vγw = (γP )v

=⇒ γP = γ . Furthermore, γv > 0, since u 7→ v. Letting n : P n
v,u > 0, we have

γu = (γP n)u ≥ γvP
n
v,u . Noting that γu = 1, this shows γv < ∞.

prop 1.18As a corollary, under the same conditions, if Eu[Ru] is finite, π = (πv : v ∈ V ), where

πv =
γv∑

w∈V γw

is a stationary distribution.

proof.Observe

∑
w∈V

γW =
∑
w∈V

Ei


R−1
n∑

n=0

1Xn=w

 = Eu


R−1
n∑

n=0

∑
w∈V

1Xn=w

 = Eu[Ru]

So we require that Eu[Ru] < ∞, then a stationary distribution exists.

An an exercise, if u is recurrent and u 7→ v, then Pu(Tv < ∞) = 1 ∀v ∈ V . prop 1.19π, as defined
above, is a limiting distribution.

proof.Consider two independent copies Xn, Yn = Markov(P ). Then (Xn, Yn) is a Markov
chain with transition matrix Q = (q(v,w),(x,y))(v,w),(x,y)∈V×V . In particular,

q(v,w),(x,y) = pv,xpw,y

Fix some state u ∈ V . Let α be the initial distribution that has X0 = u and Y0 ∼ π.

α(x,y) =

π(y) x = u

0 o.w.

Remark that, as π is stationary, Yn ∼ π ∀n ≥ 0. For any u ∈ V , we’d like that
P n
u,v → π(v).

Let M = inf{n ≥ 0 : Xn = Yn} be the first meeting time of the Xn and Yn chains. If P is
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finite and regular, then Q is finite and regular. Then

Pα(M < ∞) ≥ Pα(T(v,v) < ∞) =
∑

(x,y)∈V×V
α(x, y)P(x,y)(Tv,v < ∞) = 1

It follows that limn→∞ Pα(M > n) = 0. We claim that Pα(Xn = v,M ≤ n) = Pα(Yn =
v,M ≤ n) ∀n ≥ 0. Assuming this, then

Pu(Xn = v) = Pα(Xn = v) = Pα(Xn = v,M ≤ n) + Pα(Xn = v,M > n)

Pπ(Yn = v) = Pα(Yn = v) = Pα(Yn = v,M ≤ n) + Pα(Yn = v,M > n)

=⇒ Pu(Xn = v) − π(v) = Pα(Xn = v,M > n) − Pα(Yn = v,M > n)

=⇒ |Pu(Xn = v) − π(v)| = |Pα(Xn = v,M > n) − Pα(Yn = v,M > n)| ≤ Pα(M > n)

But Pα(M > n)→ 0, so it must be that Pu(Xn = v)→ π(v).

We still must show the claim, however.

Pα(Xn = v,M ≤ n) =
n∑

k=0

∑
w∈V

Pα(Xn = v,M = k, Xk = w)

=
n∑

k=0

∑
w∈V

Pα(M = k, Xk = w)Pα(Xn = v|Xk = w,M = k)

MP=
n∑

k=0

∑
w∈V

Pα(M = k, Xk = w)P n−k
w,v

and now we reverse!

=
n∑

k=0

∑
w∈V

Pα(M = k, Yk = w)P n−k
w,v

MP=
n∑

k=0

∑
w∈V

Pα(M = k, Yk = w)Pα(Xn = v|Yk = w,M = k)

= Pα(Yn = v,M ≤ n)
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