Stochastic Processes
MATH 447

Nicholas Hayek
Taught by Prof. Louigi Addario-Berry



CONTENTS

I Markov Chains

Introduction

Time-Homogeneous Markov Chains
Multi-Step Transition Probabilities
Long Term Behavior
Periodicity of States
Finding Stationary Distributions
Transience and Recurrence
Canonical Decompositions
Proof of Fundamental Theorem of Markov Chains

Index of Definitions

© Last updated February 4, 2026 Nicholas Hayek &8 @


mailto:nicholas.hayek@mail.mcgill.ca
www.nicholashayek.com

DEF 1.1

DEF 1.2
DEF 1.3

DEF 1.4

3 MARKOV CHAINS

We assume working knowledge of probability and no knowledge of measure theory
(though a grasp of analysis is essential). See these MATH 356 notes, also taught by Louigi!

I Markov Chains

Conditional expectations will be important in this course. Recall E[X|Y = y,], where X, Y
P(X,Y=y0)
P(Y=y,)
Instead, we consider the slice of the joint density function f(x, y) at y = yy. The resultis a
one dimensional function g(x) which may not have probability 1. Hence, we divide by

f g(x) to make it into a density function:

are random variables. If Y is continuous, writing E[X|Y = y,] = , will not work.

N f(x,%0)
E[X|Y = yo] = fR —fR o yo)ddex

We frequently write fx|y(x) = f(<¥)/[, f(x,y)dx, and call this the conditional density of X given
Y. For fixed y, then, E[X|Y = y] = E[Z], where Z ~ fxy.

INTRODUCTION

Before providing definitions, we give some examples of stochastic processes:

Eg. 1.1 A simple random walk: S;,; = S; + X;, where X; ~ Ber(p) and Sy = 0. We
might ask: does S; ever return to 0, i.e.

P@i>0:S; =0)

Eg. 1.2 A branching process: as in asexual reproduction, we have an initial node.
Each node n has a number of children X,,, where % ~ Ber(p). We denote Z;
to be the number of inididuals in the i-th generation. We might ask: does Z;
ever have no children, i.e.

PEi>0:2; =0)

Eg. 1.3 Choose k independent random points in the square [0, Vk]2. On average, then,
there is 1 point within any unit square U C [0, Vk]2.

| J

Given a finite or countable set V, a Markov chain with state space V is a sequence X, : n > 0
of random variables, with X,, € V, such that:

P(IXVHI = vn+1||IX0 =V, ey Xypo1 = vn—ll’ IXn = vnl) = I[D(Xn+1 = vn+1|Xn = Vn)

future past present

In other words, the future only depends on the past via the present. This is called the
Markov property.
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Sometimes we allow Markov chains to be only finitely large (i.e. 0 < n < m). For instance,
we limit ourselves to one weekend of gambling in Las Vegas. A graphical example would
look something like:

1 — 3 1 1 1
\1/8 Tl P(X53=2|X,=1)
2 ZEL R R
3 3 3 3
n=20 n=1 n=2 n=23
By repeated Bayes’ Law, we observe PROP 1.1

]P)(Xl = V1yeens Xn = ”l/n|X0 = U())
=P(X; = v1|1Xo = vp) - P(X; = v2|Xg = vp, Xy = v1)---P(X,, = v,| X = v, o0 Xym1 = V1)
=P(X; = v1|Xo = vp) - P(X; = v2|X4

vy)---P(X,, = v,|X,-1 =v,_1) by Markov property

TIME-HOMOGENEOUS MARKOV CHAINS

We often write  We say that a Markov chain is time-homogeneous if, for all u,v € Vand n > 0 DEF 1.5
THMC

P(X1 = vIXy, = u) = P(Xy = v|Xp = u)

In other words, the chain’s behavior is described entirely by P(X; = v|Xy = u) for each
(v,u) € V x V. In this case, we can describe such probabilities in a transition matrix P: DEF 1.6

P = (Pu,v)(u’v)ev2 = (]P(Xl =v[Xp = u))

(u,v)eV?

Eg. 1.4 Recall the game Snakes and Ladders. A 6 x 6 grid is indexed 1, ..., 36. Players
start at the 1 cell. The game ends when a player reaches the 36 cell. A die roll
dictates how many spots one advances. The are some directed edges between
cells (increasing: "ladders", decreasing: "snakes"). One must follow these
edges when one lands at its tail. Suppose a ladder exists from 11 to 27. Then

1
P(Xll = 27|X10 - 6, X9 - 3) = g = P(Xll - 27|X10 - 6) - P(Xz - 27|X1 - 6)

We see that Snakes and Ladders is naturally modeled as a time-homogeneous
Markov chain.

Eg. 1.5 Sampling without replacement is not a Markov chain. If we sample from




DEF 1.7

DEF 1.8
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|X| = 10, we have

P(Xg =a |X2 = b) =1/
P(X3 :a|X2 = b,Xl = C) =14
P(X3:5l|X2:b,X1 :ﬂ)ZO

so we do not satisfy the Markov property.

Eg. 1.6 Returning to the Snakes and Ladders example, consider S C V. Let Tg =
inf{n > 0: X, € S}, which we call the "hitting time" of S. We may ask...

* What is the average number of rounds to finite? We can write this as
E[Ti36)1 X0 = 1].

* What is the probability of landing on 18 or 19 before the game ends? We
can write this as P(Tj;5,19) < Ti36)|Xo = 1).

* What is the average number of visits to 6 before the game ends? We can

write this as
E[#{n € [Tiz6)] : X, = 6}|Xo = 1]

* What is the expected proportion of time spent on state 5 before the game
ends?

* If we allow two players, what is the probability that player 1 wins? Is
this still a Markov chain?

| J

A matrix P = (pu,v) 2 is called a stochastic matrix if every row sums to 1, i.e.

(u,v)e
Yuce V,przl

Note that any stochastic matrix is the transition matrix of some time-homogeneous Markov
chain with state space V and transition probabilities

]P)(Xn+1 = len = u) = ]P)(Xl = V|XO = Ll) =Puyv

A directed graph, together with its stochastic matrix, can visualize any THMC:

()

@ 25 > ©
\?} / 0 .5 .25 .25
' 25 5 0 0 .5
\ 75 7 lo o .25 .75
1 0 0 0

\ s
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Eg. 1.7 Random walks on an undirected weighted graph, where edge weights dictate
the proportional probability of transitioning between two states, are a special
class of THMCs. In particular, given a graph G = (V, E) with weights w(e) >

0:ec E, we set
w({u, v})

Puw = 5 vt wifin, 2))

If there are no edges u < v, we write p,, , = 0.

Not every THMC can be represented by a random walk on an undirected
weighted graph. In particular, see the directed graph listed above, or any
transition matrix which is not symmetric.

As a concrete example, we can consider a random walk on the number line Z,
where, if w(k, k+1) = a, w(k - 1,k) = 5.

1

REELI

1 1

ot 1 2 gl 2,y 4 38

ES

Multi-Step Transition Probabilities

Given a THMC X = X,, : n > 0 with a transition matrix P, we write

P(X, = v|Xp = u) = ZP(X2 =v,X; = w|Xp = u)

weV

= Z P(X;, = w|Xy = u)P(X, = v|X; = w,Xg=7) by Markov property
weV

= Z PuwPwyv = (Pz)u,,, or write PMZ’V
weV

Hence, to determine a two-step transition probability, and by extension an n-step transi- PROP 1.2
tion probability from u to w, we consider P .

See Prop 1.1 to expand probabilities, using Bayes’, as needed. We get that PROOE.
P(X,=vXo=u)= )  BX;=vp,., Xyo1 = Vg, Xy = v/Xp = 1)
Vi)V 1€V
= Y P10 P ) = (P O
Ul,...,vn,lev
Thus, if P is a stochastic matrix, then so is P". PROP 1.3

ZVGV Pb?,v = ZVGV P(Xn = v|X0 = u) =1. [ PROOE.
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Theorem 1.1 Markov Property

If X, : n > 0is a THMC with state space V, then for all ug, ..., u,, 1, u,v €V,

]P(Xn+m = V|XO = Uy ey Xy = Uy1, Xy = u) = IP)(Xn+m = V|Xn = u) = va

PROOE. One shows this by combining the Markov property with Prop 1.2 via induction. [

Somewhat nonsensically, we also call this the Markov property. When talking about
THMCs, this will be the default notion.

DEF 1.9  We say that a Markov chain has an initial distribution a = (a, : v € V) if P(Xy =v) = a,
for each v € V. If this is the case, we often write a as a subscript of our state probabilities.
For instance,

Po(Xy=v)= ) Pal(Xo=1u,X,=v)= ) Pa(Xo=uPa(Xy=vXg=u)= ) a,Pl,
ueV ueVv ueVv

PROP 1.4  For any event E depending only on X, ..., X, with P(X,, = u, E) > 0, we have

]P)(Xm—m = V|Xn = urE) = PIZZU

PROOF. For any such event E, we can determine whether E occurs exactly when we know the

realized values u; of X; fori = 1,...n— 1. Hence, we may write S to be the set of tuples
(ug, ..., u,_1) that guarantee E. It follows that

P(X, = u, E) = ZP(X =5 X, =u)
seS

Similarly, we have

P(Xpym =¥, Xy =t E) = ) P(Xpypy = v, X, = ,x =)

seS
= ZIP’(Xn+m =v| X, =u,x=s)P(X, =u,x=s)
seS
=P ) P(X, =ux=5)=PIP(X, = uE)
seS
Divide and use Bayes, and the result follows. O

PrROP 1.5 If X is a THMC with transition matrix P, then, for all k > 1, X}, : n > 0 is a THMC with
transition matrix Pk.



STOCHASTIC PROCESSES 8

For any n = 0, any sequence uy, ..., 4,1 € V satisfies

IP)(X(n+1)k = un+1|X0 = ug, Xp = Uy, e, Xy = un) = Pk 0

Up,Unsl

p
Theorem 1.2 Chapman-Kolmogorov

For any Markov chain X with state space V, any m,n > 0,and u,v € V,

IP)(Xm+n = V|XO = u) = Z P(Xn = w|XO = u)]P(XmHz = len = w)

weV

If the X is time homogeneous, then this is P}, which agrees with Prop 1.2.

. J

Long Term Behavior

Recall from probability the law of large numbers: if Y, : n > 1 are IID with common mean
, then % — p in probability, where S, =) ", Y;,i.e. Ve > 0,

limsupIP’('%—;/t > e): 0

n—oo

If Y; € Z then, for k,{,u; € Zand i =1,..,n-1,

P(Sn+1 = €|Sn =k, Si = U; VI) = ]P)(Yn+1 ={- klsn =k, Si = U; Vl)
]P)(Yn+l ={- k|Y1 = U; — Uy, Y2 = Uy —Uy..oy Yn =k- Mn_l)
P(Yy1l€—k) =P(Yy = €—k) = P

where S, : n > 0 has transition matrix P, noting that it may be viewed as a THMC.

From now on, we denote by P, (E) the probability P(E|v).

Eg. 1.8 A general two-state chain, with states A and B, can be described by

l-« a
P =
5 1%
Let qn = PA(Xn = A) = IP(X” = A|X0 = A). Then

dn+1 = ]pA(XnH = A, X, = A) + ]PA(XnH = A, X, = B)
= ]P)A(Xn+1 = A|Xn = A)PA(XH = A) + IP)A(X11+1 = A|Xn = B)PA(XH = B)
=(1-a)g,+p(1—-g,)=p+(1—-a-p)q,

This recurrence has a unique solution. In particular, one can find

_ B n
q”_a+,3+(1_a_ﬁ) atp

PROOF.

DEF 1.10
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It follows that g, — aLiﬁ, and hence Py(X,, =B)=1-¢g, — a%[), Likewise:

PalX, = B) = i+ (L -pr iy

So Py(X,, = B) — &

a+p*
Let 7t := (7, 7g) := (aﬁ%ﬁ' O(L-l—ﬁ) be the distribution of our initial state X, Then
Pr(Xy = A) = mgP4(Xy = A) + mpPp(Xy = A) =1y

and, similarly, P, (X; = B) = mg. Hence, if X, has initial distribution 7, then
X also has distribution 7. By induction, X, has distribution 7= Vn > 0.

. J

When we say X = Markov(P), we mean that X is a THMC with transition matrix P.

A probability distribution 7 is called stationary if P = m. Similarly, a probability
distribution A is called a limiting distribution if, for each u,v e V

(P")yp = Apasn — oo

In other words, P,(X,, = v) — A,. Note that, for any initial distribution a, we have
aP" — A ie. (aP"), — A,, where A is limiting.

If A is a limiting distribution for P, then A is stationary for P.

Fix any initial distribution «, we have

A = lim (aP") = lim (aP" 'P) = (lim aP™ )P = AP O

n—-o0 n—-00 n—-00

Stationary distributions need not be unique, but limiting distributions are (as the limit
lim, ,,, aP" is well-defined). In general, then, stationary distributions need not be

limiting distributions. When n =0,P" =1,
which encapsulates
A stochastic matrix P is called regular if 3n > 1 such that P > 0 on all entries. the idea that, at

timestep 0, we will
be at our initial

Theorem 1.3 Fundamental Theorem of Markov Chains

positions.
Every finite, regular stochastic matrix P has a limiting distribution 7.
Incorporating some of the formulations above, this is equivalent to saying: For a reqular
stochastic matrix, there exists a unique distribution 7 = (1, : v € V) such that nP = 1w and
[Pu(Xn =v) >, Yu,veV. In this case, there is
a unique stationary
A stationary distribution always exists! distribution, and it is

the unique limiting
Let p =(1,.., 1). Then note that Pp = p, since the sum of any row in P must be 1. Hence, distribution.

P has eigenvalue 1. It follows that it has a left eigenvector, i.e. 7w : ®P = 7. This is exactly
a stationary distribution, as long as we scale suitably such that 7 is a distribution.



This is true, but
requires the fact that
P is stochastic

Clearly, if P is
regular, then it is
irreducible
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However, then process of scaling into a distribution is non-trivial. Since = may have
negative coordinates, and hence } 7t; = 0, we must consider instead ||, i.e. prove it is
also an eigenvalue.

Periodicity of States

For u,v € V, we say that v is accessible from u if 3n > 0 such that (P"), , > 0. Equivalently,
in the directed graph generated by P, there is a directed path from u to v. When v is
accessible from u, we write u — v.

States u and v communicate if u — v and v — u. When u and v communicate, we
write u <> v. Observe that communication is a equivalence relation. Hence, the state
space V can be written as a disjoint union of mutually-communicating states, called a
communication class. Note that, in the directed graph generated by P, these correspond to
the strongly connected components.

We say that P is irreducible if there is only one communication class.
u—>v & P,(Ty <o) >0.

The period of a state u € V is
d(u) :=gcd(n>0:P;, >0)

If d(u) = 1, we call u aperiodic. By extension, P is aperiodic if d(u) =1 VYu € V, and X is
aperiodic if X = Markov(P) for P aperiodic.

If u & v, then d(u) = d(v).

LetI ={n>0:P}, > 0}, and similarly ] for v. Hence, d(u) = gcd(I) and d(v) = gcd(]).
Let a, b > 0 such that P , > 0 and Pﬁu > 0. Then

b b
P;,L > P;,vpv,u >0
= a+bel,sod(u)la+b. Now,if n € J, then
+b+ b
Plf,u " Z Pua,VP'Urf'UPV,M > O

— a+b+nel, sod(u)n+a+b. But, by the previous line, d(u)|n. Since n € | is
arbitrary, we can write d(u)| ged(]) = d(v).

Symmetrically, we could conclude that d(v)|d(u), so indeed d(v) = d(u). Ol

LetI ={n>0:P}], >0}. If gcd(I) = 1, then da, b € I such that gcd(a, b) = 1.

This is not true for any I (and thus relies not only on number theory). Let ¢, m € I, with
¢ <m.Letk =m—{. If k =1, then gcd(¢, m) = 1. Otherwise, since gcd(I) = 1, there is
an n € I with k { n. We then write n = gk + r, with r € [k — 1]. Then m’ € (9 + 1)m € I,

since Pf;l)m > (P",)7*!. Symmetrically, we can argue ¢’ = (q + 1){ € I.

DEF 1.14

DEF 1.15

DEF 1.16

DEF 1.17

PROP 1.7

DEF 1.18

DEF 1.19

PROP 1.8

PROOF.

PROP 1.9

PROOF.



PROOF.

PROOF.
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Similarly, £ := ¢’ + n € I, since P{;" > P, PI',,. We have

m—-0=@+1)ym-(q+1)-n=(q+1)(m-~€)-n
=(gq+1)k-n=k-relk-1]

TODO... O

Theorem 1.4 Postage Stamp Lemma

If P is irreducible and aperiodic, then Yu,v € V,dN such that P}, >0 VYn > N.

Before proving this, we note that, for a4, b > 1 with gcd(a, b) = 1, then for any q > ab, we
can write q = ja + kb for integers j, k > 0.

Fix u,v € V. Since P is aperiodic, there are a, b > 1 with P} , Pb > 0and gcd(a, b) =1,
by Prop 1.9. Since P is irreducible, there is some m > 0 w1th P, > 0. Thus, let
N =m+ab. For any n > N, let ¢ = n — m. We have that q > ab, sowecanﬁndj,k >0
with g = ja + kb. Then

no_ Pq+m _ Pjav+kb+m
=P,y =F;

P, > Pl Prb P > (PE ) (PE kP

u,v

All are positive, so P}, > 0, as desired. ]

Theorem 1.5 Characterization of Regular Markov Chain

Let P = (py,»)uvev be a stochastic matrix, where |V| < co. Then

P is regular <= P isirreducible and aperiodic

We first note why finiteness is necessary. Consider:

QQQQQ

----------- ) k-1l ——k—— k1 —— k+2

with all edges having weight 1. This graph is clearly aperiodic and irreducible, but
not regular.

(= ) We start with the "easy" direction. If P is regular, then dn > 0 s.t. P}, > 0 for
all u,v € V. Then, for all u,v € V, we have u — v and v — u. Hence, P is irreducible.
Now, if P is irreducible, then for all u € V, there is some v € V such that P, , > 0
(think about this in graph theoretic terms). Then, let n > 0 be such that P}, is positive.
We have

Pt > PP, , >0

So, with I = {m > 0: P}, > 0}, d(u) = gcd(I) < gcd(n,n + 1) = 1. It follows that



This is distinct from
Example 1.7
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d(u) =1, so u is aperiodic (and hence P is aperiodic).

(<= )By Thm 1.4, for each u,v € V, there exists N : P}/, > 0Vn > N. Let N* be the
maximum value of N determined over all pairs (u, v) € V2. Then, for n > N* and all
u,v € V, P}, > 0. It follows that all entries of P" are positive, and we are done.  [J

Finding Stationary Distributions

Recall that x = (x,, : v € V) is a stationary distribution if xP = x. Let V be finite. Then, for
a stationary distribution x, we have

X1P1,1+ -t XuPp1 = X

X1P12+ -t XuPp2 = X2

X1P1,nt -t XuPun = X

We have n equations, n unknowns, and a homogeneous system, so there is not a unique
solution. If

0 1 0
P=10 05 05
05 0 0.5

We can compute x = (¢, 2t, 2t). But, noting that x is a probability distribution, and hence
5t =1, this yields x = (1/5, 2/5, 2/5). We’ll consider some special cases.

UNDIRECTED GRAPHS

Let G = (V, E) be undirected. Then we define a THMC by

1
P —{W {u,vh e E
u,v —
0 0.W.

Let x = (deg(v) : v € V). We have

1
(xP), = ) deg(u)Py, = ) )deg(”) " deg(u)

uev ueN (v

= deg(v)

Hence, xP = x. Recalling that } . deg(v) = 2|E|, we conclude that

deg(v) .
( 2|E| TV E V)

is a stationary distribution.
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UNDIRECTED WEIGHTED GRAPHS

Let G = (V, E) be undirected. Then, we define a THMC by This is not distinct
from Example 1.7
w({u,v})
p, =) Towutiezy V€N
0 0O.W.

Let x = (3 ,..5, w(e) : v € V). Then we can compute xP = x, and similar to above,

x:(wzm

2 ZeEE w(e)

is a stationary distribution.

Transience and Recurrence

Recall Ts = inf{n > 0 : X, € S}, the "hitting time" of 5. We let Rg = inf{n > 0 : X, € S}.
DEF 1.20  Note that if Tg > 0, Ts = Rg. Otherwise, Rg gives the first "return time" to the set S.

DEF1.21 A state v € V is called recurrent if P, (Ry,) < co) = 1. If all states of v are recurrent, we may
DEF1.22 P and X = Markov(P) recurrent. Otherwise, we call v transient, and similarly extend the
notion to the transition matrix and chain when all state are transient.

DEF 1.23  For a given state v € V, we call L, = |[{n > 0 : X, = v}| the local time of v. This notion is
not probabilistic: we simply consider a realized walk on the chain (or a part of the chain).
Note that, if v = X; and v is recurrent, then L, = co.

PROP1.10  Let X = Markov(P). For any state v € V and k > 1, Intuitively, if L, > k
when X = v, then

L, > k-1 when
Xij, = v, where iy is
the first time we

P,(L, > k) =P, (L, > 1)k

return to v.
PROOF. Using the law of total probability:
Py(Ly > k) = E[Py(Ly > kIR,)] = ) _Py(R, = HP,(L, > KIR, = ¢)
=il
= ZIP’U(RV = HP,(L, > kIR, = t, X; = v) AsR, =t =
t=1 Ry=tnXy=v

=Py(L, >k=1)) Py(R,=1)
t=1
=P, (L, >k-1)P,(R, <o) =P,(L,>k-1)P,(L, >1)

The result follows by induction. O
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1 v recurrent

0 v transient

PV(LVZOO):{

This follows directly from Prop 1.10 + monotonicity of probability. ]

> ) v recurrent
) P, =

v — L 4 transient
n=0 1-

]P,,(R{,,]<oo)

This follows from linearity of expectation, and the fact that, for a non-negative integer

variable Z,

E(Z] = Zp(z > k)
k=0
In particular... [TODO] O]

If u < v, then u is transient <= v is transient.

Fix a,b > 0 with P? , P?, > 0. Then
(o) (o) (o)
b b
varfv 2 ZPIZ: = ZPV,MPL?,MPL?,V
n=0 n=0 n=0

(o)
_ pb pa n
- Pv,uPu,v Zpu,u
n=0

Thus, if v is transient, then ) ;7 4 P!, < 00, 50 it must be that } ;7 P}, < oo, i.e. u is
transient. The argument is identical in reverse. O]

7

Eg. 1.9 If u & v and u is recurrent, then P, (Tj,) < o) = 1.

Eg. 1.10 The following chain is completely transient:

2 —1/3— -1 ~1/3— 0 —1/3— 1 ~1/3— 2¢

In fact, we could replace 2/3 by p, and 1/3 by 1 — p. In this case, the chain is
irreducible. To see that it is transient, we have

2n
Py = ( B )P”(l -p)

PROP 1.11

PROOF.

PROP 1.12

PROOF.

PROP 1.13

PROOF.
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Then

[ee) [ee]

n=0 n=0 n=0
n

return on even-length cycles.

We conclude that the chain is transient when p # %

|

ZPOZ,S < Zzbzpn(l -p)t = Z(4p(1 -p)'<oo ifp= %

By Prop 1.12. Notice that } 77, Py = Y520 P&O, since it is only possible to

FACT  Stirling’s Formula provides

in that

This fact implies

7

(o]
2n
) B

n=0 n=0

Il
[
NS
| =
| =
=
p—

|
=
=
¢
—_—

I
gk
£
o
Sl
I
M
El
I
8

We conclude that the chain is recurrent when p = %

.

PrOP 1.14 If V is finite, then there is at least one recurrent state.

HEQOR Fix an initial distribution a = (a, : v € V). Then P, (Y ,cy L, = o0) =

1. We conclude

These facts, though
out of the scope of
this course, can be
derived from a
careful treatment of
Reimann sums
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that there is at least one state v € V with P, (L, = co0) > 0. But also:

Py(L, = c0) = ZPQ(L‘I/ =00, T, =n)= Zpa(Lv = 0o|T,, = n)P,(T, = n)
n=0 n=0
= ZPQ(L’U = oolTv =nX, = v)]P)a(Tv = 1’1)
n=0
= ZPQ(LU = 00| X, = V)P (T, = n)
n=0

n=0

SoP,(L, =) >0 = P,(L, =o0) =1, byProp 1.11. O
Finite, irreducible chains are recurrent.

Since the chain is finite it has at least one recurrent state, by Prop 1.14. Then all states
must be recurrent, since the chain is irreducible, by Prop 1.13. O

Canonical Decompositions
Fix a transition matrix P and list the communication classes of V as
Dy, D,, ... (transient) Cy,Cy,... (recurrent)

Note that we can split the chain up in this way by Prop 1.13. Set D = U;5(D;. Then the
canonical decomposition of the chain is defined to be

DucC,uCyu---

We say that a communication class C is closed if, for any u € C,v ¢ C, p,,,, = 0. Intuitively,
if Xy € C, or we enter C at some later time, we will never leave C.

If C is a recurrent communication class, then C is closed.

Fix u € C,v ¢ C. Suppose v = u. If p, , > 0, then v = v, so v € C 4. Suppose v v> u.
Then P, (R, = o) > P,(X; =v) = p,,. But P,(R, = 00) = 0, since u is recurrent. It
follows that p,, , = 0. O

The converse of Prop1.16 is not true in generality, but it is in the finite case:

Finite, closed communication classes are recurrent.

From any starting state in C, we must visit some state u € C infinitely often, as
|C| < o0 and X; € C Vt. But recurrence is a class property by Prop 1.13. Hence, all of
C is recurrent. O

PROP 1.15

PROOF.

DEF 1.24

DEF 1.25

PROP 1.16

PROOF.

PROP 1.17

PROOF.



PROOF.

17 MARKOV CHAINS

When our communication classes are closed, we have

N

Proof of Fundamental Theorem of Markov Chains
Recall Thm 1.3:
Every finite, regular stochastic matrix P has a limiting distribution 7.

We will prove this in two steps. First, we will find some stationary distribution. Then, we
will prove that this is a limiting distribution.

-
Theorem 1.6 Existence Theorem

Let P be irreducible and recurrent. Let (X, : n > 0) = Markov(P). Fix u € V, which
we call a reference vertex, and, for any v € V, define

Vv = Eu[l{o <n<Ry,:X,= v}”

Lety =(y,:ve V). ThenyP=y,and0<y, <co Vv e V.

- J

Observe that y, = 1. Write

R,-1 R, 00
) Txmr| =Euf) Tx Zﬂxn—vm]
n=0 n=1 n=1

We utilize a second indicator variable in order to use linearity of expectation (other-
wise, our sum would index over a random variable, which is not valid). Then

Vv:]Eu =E, =E,

Vv = ZfEuHXn:vﬂnsRu] = Z’PM(XH =v,n<R,)
n= n=

Now, using the law of total probability,

P, (X, =v,n<R,)= ZPM(Xn—l =w, X, =v,n<R,)

weV

Z Py (X =v[Xp1 =w,n < RYP(X;.1 =w,n < Ry)
weW

Z Py(Xy1 =w,n<Ry)P,,

weV

By E,,, we mean the
expectation, under
the assumption that
XO =u



STOCHASTIC PROCESSES 18

So
Vv = i Z Pwv]P (Xn 1=Ww, n<R )_ ZPw,v ipu(xn—l =w,n-1 <Ru)
=1 weW weV n=1
prv ZP X =w,n<R ) ZPwv ZEu[ﬂXn:wﬂiKRu]
weV weV n=0
= ZPWVE Z :|: pr,vyw = (VP)V
weV weV

= yP = y. Furthermore, y, > 0, since u — v. Letting n : P}, > 0, we have
yu = (yP"), > y,P},. Noting that y,, = 1, this shows y, < co. O

As a corollary, under the same conditions, if E,[R, ] is finite, 7 = (7, : v € V'), where

Vv

Ty =
! ZweV Yw

is a stationary distribution.

Observe
R;!
ZyW = ZE Z“X —w|=Ey ZZ ]]X,,:w :Eu[Ru]
weV weV n=0 weV
So we require that E,[R, ] < oo, then a stationary distribution exists. O

An an exercise, if u is recurrent and u +— v, then P, (T, < c0) = 1 Vv € V. 7, as defined
above, is a limiting distribution.

Consider two independent copies X,, Y,, = Markov(P). Then (X, Y,) is a Markov
chain with transition matrix Q = (q(v,w),(x,y))(v,w),(x,p)eVxV- In particular,

d(v,w),(x,y) = Pv,xPw,y

Fix some state u € V. Let a be the initial distribution that has Xy = u and Y, ~ 7.

Remark that, as 7 is stationary, Y,, ~ @ Vn > 0. For any u € V, we’d like that
P}, — m(v).

Let M =inf{n > 0: X,, = Y,,} be the first meeting time of the X, and Y,, chains. If P is

PROP 1.18

PROOF.

PROP 1.19

PROOF.
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finite and regular, then Q is finite and regular. Then

P, (M < 00) = Py(T(y,) < 00) = Z (%, P)Px )(Ty,y < 00) = 1
(x,9)eVxV

It follows that lim,,_,., P, (M > n) = 0. We claim that P,(X,, = v, M < n) = P,(Y, =
v, M < n) Vn > 0. Assuming this, then

)=P (X, =v) =P (X, =v,M <n)+ P (X, =v,M > n)

)=Pu(Y,=v) =Py (Y, =v,M <n)+P,(Y,=v,M >n)
)

= |Pu(Xn =v) - 7‘((1/)|

But P,(M > n) — 0, so it must be that P, (X, = v) — n(v).

We still must show the claim, however.

P, (X, =v,M<n)= ZZIP’ (X, =v,M =k X; = w)
=0 weV

_ZZIP’ (M =k, Xy = w)Py(X, = v|Xp = w, M = k)
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